SAMPLE INVESTIGATION

EFFICIENCY RATIOS

An efficiency ratio is the ratio of surface area to volume of a shape.

e.g.: A particular rectangular prism has a surface area of 88 cm² and a volume of 48 cm³. Its efficiency ratio is $88 \div 48$ and is expressed as a percentage i.e. 183%.

Efficiency ratios are important in biology with the study of heat loss of animals, and in physics with heat loss and gain of containers.

- * Using the formulae given at the end of this page examine the efficiency ratios for various spheres, cubes, cones and cylinders.
- * Look at which shape is the most efficient (i.e. has the LOWEST ratio).
- * Look at how increasing the radius of a sphere or length of a cube affects its efficiency ratio.
- * Look at how different shaped cones and cylinders have different efficiency ratios.

$$V(sphere) = \frac{4}{3}\pi r^{3} \quad SA(sphere) = 4\pi r^{2}$$

$$V(cube) = l^{3} \quad SA(cube) = 6l^{2}$$

$$V(cone) = \frac{1}{3}\pi r^2 h$$
 SA(cone) = $\pi rs + \pi r^2$ where s is slant height

$$V(cylinder) = \pi r^2 h$$
 $SA(cylinder) = 2\pi r h + 2\pi r^2$

© OTRNet Limited copying rights are granted to the person who downloaded this investigation from <u>www.otrnet.com.au</u> to reproduce sufficient copies for use in their classroom. No other use is permitted. For further investigations of this type subscription is available. DO NOT REMOVE THIS WARNING.

ASSESSMENT TASK

EFFICIENCY RATIOS

The formulae you require for this assessment are printed here:

$$V(sphere) = \frac{4}{3}\pi r^3 \qquad SA(sphere) = 4\pi r^2 \qquad V(cube) = l^3 \qquad SA(cube) = 6l^2$$

 $V(cone) = \frac{1}{3}\pi r^2 h$ SA(cone) = $\pi rs + \pi r^2$ where s is slant height

 $V(cylinder) = \pi r^2 h$ SA(cylinder) = $2\pi rh + 2\pi r^2$

1. Calculate the efficiency ratios for;

(a) A sphere of radius 3 cm _____% (4 marks)

(b) A cube of edge length 7 cm _____% (4 marks)

(c) A cone with height and radius both 4 cm _____% (4 marks)

(d) A cylinder with height and radius both 5cm _____% (4 marks)

- 4. The efficiency ratio for a cube is always $\frac{6}{1}$. Use the formulae to show why this is true. (3 marks)

5. A rodent with cylindrical body shape loses most of its heat from its body. Will a rodent with body length 10cm and radius approximately 5cm be more heat efficient than one with a length of 5cm and radius of approximately 10cm? Show working to justify your answer. (3 marks)

© OTRNet Limited copying rights are granted to the person who downloaded this investigation from <u>www.otrnet.com.au</u> to reproduce sufficient copies for use in their classroom. No other use is permitted. For further investigations of this type subscription is available. DO NOT REMOVE THIS WARNING.